MAE 162E

F.R.E.D.

Folding Robotic Exploration Device

Group 10 - Atticus Binder, Sienna Gilliam, Joshua Noll, Mo Sen, John Villalobos, Jonathan Yu

F.R.E.D. Project Goal Recap

- Features
 - Inspired by origami
 - o Transformative ability; folds into a cube
 - Locomotive mobility
- Applications
 - Challenges in space optimization
 - Accessibility assistance
 - Environmental monitoring

Design Objectives

- Fold into multiple configurations
- Easily stored
- Battery-Powered
- Easily reconfigurable
 - Simple base modules (triangles) allow for easy add-ons
 - Can combine into complex geometries
- Internalized electronics
 - Batteries and microcontrollers
 - Wires fed through robot for sleek design

Design Process

- Components
 - Motors
 - Considerations: cost, torque, RPM
 - Controller
 - Moved from Arduino to Pi (more pins)
 - Batteries
 - Produce required power at a low weight

Components

- Controlled with Raspberry pi
- (2) motor drivers
- (4) 986.41:1 motors with encoders, 35 RPM max
- Motors actuate in sequences that produce specific geometries
 - o Cube, crab, table, inchworm, waving

Raspberry Pi Pico

Motor

Motor Drivers

Design Process

Geometry

- Modelling prototypes
 - Paper
 - 3D printed modules
- Balancing folding with practicality
- Joining geometries
- Altering CAD to fit changing part dimensions

Geometry - Final CAD Model - Units

Geometry - Joining

Version 1 Version 2

Code Overview

- Created a motor class to instantiate each of the four motors
 - o Assigned PWM, IN1, IN2, ENC1, ENC2 pins to each
- Made class-level functions
 - Encoder tick function, update control function, motor driver functions, set target position
- General functions
 - Isolate, adjust_motor
- Configuration functions
 - Cube, crab, table, start_loco, locomotion, wave

Design Process

Electronics

- o Batteries:
 - 2 packs 4 batteries each
 - 4 Lithium Polymer Batteries in series,3.7V, 150mAh
- Power Requirements:
 - Motor: 12V
 - Raspberry Pi: 1.8-5.5V, 80mA
 - Motor Drivers: 2.7V

Wiring Configuration

Design Process

Motor Control - Programming

- When should each motor turn on? In what order?
- Troubleshooting motor controls
- Selecting PWM values
- Writing pre-set functions for different configurations

How it works

- Precise position control achieved with encoders
- Motor driver signals motor to brake when desired number of encoder ticks is reached
- PID controller implemented to correct overshoot
 - Braking capabilities of motor driver were also efficient

Configurations: Cube and Unfold

- Simplest configuration
- Each motor folds up 90 degrees in order
- Unfold() does the opposite

Configuration: Cube Video

https://youtu.be/Eig6i061Qmo

Configuration: Crab Video

https://youtu.be/X6MKO7SeqyA

Configuration: Table

https://youtu.be/O6qCLshqof8

Configuration: Inchworm Locomotion

- Motors have to work in conjunction with each other
- Requires more precise angles than cube
- Extensive testing required, simulations complicated
- Explored inchworm-inspired movement

Configuration: Locomotion

https://youtu.be/dt0LUPM4hEQ

Technical Issues

- Fried already-soldered microcontroller
- Broken motor drivers
- Troubleshooting electronics → many potential areas of failure
 - Ex: PWM to wrong pins (despite correct wiring and code)
 - Ex: Faulty connections on motor wires
- Differing PWM values
 - Higher for moving modules up
 - Lower for downwards movement due to gravity
- Finicky tolerance
 - Lots of reprints

Design Objectives Revisited

Achieved:

- Fold into multiple configurations
- Easily stored
- Battery-Powered
- Easily reconfigurable

In Progress:

- Internalized electronics
 - Batteries and microcontrollers
 - Wires fed through robot for sleek design

Future Development: Configuration

Reach goal for the quarter

- Quad-legged crab configuration
 - Central brain housing in the middle
- Collapses into cubes
 - Can rotate into angled or straight configuration
- Untested high motor and circuit requirements with limited time

Future Development: Joining

Snap fit design

3-Minute Video

https://youtu.be/K9EnpdS-j-Y

Thank you!

